added roundstats with eco info, switched to avatar hash

This commit is contained in:
2021-10-17 03:52:20 +02:00
parent 7f5a2f8956
commit fd8c026a8e
35 changed files with 4187 additions and 160 deletions

View File

@@ -0,0 +1,59 @@
// Code generated by entc, DO NOT EDIT.
package roundstats
const (
// Label holds the string label denoting the roundstats type in the database.
Label = "round_stats"
// FieldID holds the string denoting the id field in the database.
FieldID = "id"
// FieldRound holds the string denoting the round field in the database.
FieldRound = "round"
// FieldBank holds the string denoting the bank field in the database.
FieldBank = "bank"
// FieldEquipment holds the string denoting the equipment field in the database.
FieldEquipment = "equipment"
// FieldSpent holds the string denoting the spent field in the database.
FieldSpent = "spent"
// EdgeStat holds the string denoting the stat edge name in mutations.
EdgeStat = "stat"
// Table holds the table name of the roundstats in the database.
Table = "round_stats"
// StatTable is the table that holds the stat relation/edge.
StatTable = "round_stats"
// StatInverseTable is the table name for the Stats entity.
// It exists in this package in order to avoid circular dependency with the "stats" package.
StatInverseTable = "stats"
// StatColumn is the table column denoting the stat relation/edge.
StatColumn = "stats_round_stats"
)
// Columns holds all SQL columns for roundstats fields.
var Columns = []string{
FieldID,
FieldRound,
FieldBank,
FieldEquipment,
FieldSpent,
}
// ForeignKeys holds the SQL foreign-keys that are owned by the "round_stats"
// table and are not defined as standalone fields in the schema.
var ForeignKeys = []string{
"stats_round_stats",
}
// ValidColumn reports if the column name is valid (part of the table columns).
func ValidColumn(column string) bool {
for i := range Columns {
if column == Columns[i] {
return true
}
}
for i := range ForeignKeys {
if column == ForeignKeys[i] {
return true
}
}
return false
}

485
ent/roundstats/where.go Normal file
View File

@@ -0,0 +1,485 @@
// Code generated by entc, DO NOT EDIT.
package roundstats
import (
"csgowtfd/ent/predicate"
"entgo.io/ent/dialect/sql"
"entgo.io/ent/dialect/sql/sqlgraph"
)
// ID filters vertices based on their ID field.
func ID(id int) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldID), id))
})
}
// IDEQ applies the EQ predicate on the ID field.
func IDEQ(id int) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldID), id))
})
}
// IDNEQ applies the NEQ predicate on the ID field.
func IDNEQ(id int) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldID), id))
})
}
// IDIn applies the In predicate on the ID field.
func IDIn(ids ...int) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(ids) == 0 {
s.Where(sql.False())
return
}
v := make([]interface{}, len(ids))
for i := range v {
v[i] = ids[i]
}
s.Where(sql.In(s.C(FieldID), v...))
})
}
// IDNotIn applies the NotIn predicate on the ID field.
func IDNotIn(ids ...int) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(ids) == 0 {
s.Where(sql.False())
return
}
v := make([]interface{}, len(ids))
for i := range v {
v[i] = ids[i]
}
s.Where(sql.NotIn(s.C(FieldID), v...))
})
}
// IDGT applies the GT predicate on the ID field.
func IDGT(id int) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldID), id))
})
}
// IDGTE applies the GTE predicate on the ID field.
func IDGTE(id int) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldID), id))
})
}
// IDLT applies the LT predicate on the ID field.
func IDLT(id int) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldID), id))
})
}
// IDLTE applies the LTE predicate on the ID field.
func IDLTE(id int) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldID), id))
})
}
// Round applies equality check predicate on the "round" field. It's identical to RoundEQ.
func Round(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldRound), v))
})
}
// Bank applies equality check predicate on the "bank" field. It's identical to BankEQ.
func Bank(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldBank), v))
})
}
// Equipment applies equality check predicate on the "equipment" field. It's identical to EquipmentEQ.
func Equipment(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldEquipment), v))
})
}
// Spent applies equality check predicate on the "spent" field. It's identical to SpentEQ.
func Spent(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldSpent), v))
})
}
// RoundEQ applies the EQ predicate on the "round" field.
func RoundEQ(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldRound), v))
})
}
// RoundNEQ applies the NEQ predicate on the "round" field.
func RoundNEQ(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldRound), v))
})
}
// RoundIn applies the In predicate on the "round" field.
func RoundIn(vs ...uint) predicate.RoundStats {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.RoundStats(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.In(s.C(FieldRound), v...))
})
}
// RoundNotIn applies the NotIn predicate on the "round" field.
func RoundNotIn(vs ...uint) predicate.RoundStats {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.RoundStats(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.NotIn(s.C(FieldRound), v...))
})
}
// RoundGT applies the GT predicate on the "round" field.
func RoundGT(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldRound), v))
})
}
// RoundGTE applies the GTE predicate on the "round" field.
func RoundGTE(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldRound), v))
})
}
// RoundLT applies the LT predicate on the "round" field.
func RoundLT(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldRound), v))
})
}
// RoundLTE applies the LTE predicate on the "round" field.
func RoundLTE(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldRound), v))
})
}
// BankEQ applies the EQ predicate on the "bank" field.
func BankEQ(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldBank), v))
})
}
// BankNEQ applies the NEQ predicate on the "bank" field.
func BankNEQ(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldBank), v))
})
}
// BankIn applies the In predicate on the "bank" field.
func BankIn(vs ...uint) predicate.RoundStats {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.RoundStats(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.In(s.C(FieldBank), v...))
})
}
// BankNotIn applies the NotIn predicate on the "bank" field.
func BankNotIn(vs ...uint) predicate.RoundStats {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.RoundStats(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.NotIn(s.C(FieldBank), v...))
})
}
// BankGT applies the GT predicate on the "bank" field.
func BankGT(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldBank), v))
})
}
// BankGTE applies the GTE predicate on the "bank" field.
func BankGTE(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldBank), v))
})
}
// BankLT applies the LT predicate on the "bank" field.
func BankLT(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldBank), v))
})
}
// BankLTE applies the LTE predicate on the "bank" field.
func BankLTE(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldBank), v))
})
}
// EquipmentEQ applies the EQ predicate on the "equipment" field.
func EquipmentEQ(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldEquipment), v))
})
}
// EquipmentNEQ applies the NEQ predicate on the "equipment" field.
func EquipmentNEQ(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldEquipment), v))
})
}
// EquipmentIn applies the In predicate on the "equipment" field.
func EquipmentIn(vs ...uint) predicate.RoundStats {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.RoundStats(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.In(s.C(FieldEquipment), v...))
})
}
// EquipmentNotIn applies the NotIn predicate on the "equipment" field.
func EquipmentNotIn(vs ...uint) predicate.RoundStats {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.RoundStats(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.NotIn(s.C(FieldEquipment), v...))
})
}
// EquipmentGT applies the GT predicate on the "equipment" field.
func EquipmentGT(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldEquipment), v))
})
}
// EquipmentGTE applies the GTE predicate on the "equipment" field.
func EquipmentGTE(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldEquipment), v))
})
}
// EquipmentLT applies the LT predicate on the "equipment" field.
func EquipmentLT(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldEquipment), v))
})
}
// EquipmentLTE applies the LTE predicate on the "equipment" field.
func EquipmentLTE(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldEquipment), v))
})
}
// SpentEQ applies the EQ predicate on the "spent" field.
func SpentEQ(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldSpent), v))
})
}
// SpentNEQ applies the NEQ predicate on the "spent" field.
func SpentNEQ(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldSpent), v))
})
}
// SpentIn applies the In predicate on the "spent" field.
func SpentIn(vs ...uint) predicate.RoundStats {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.RoundStats(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.In(s.C(FieldSpent), v...))
})
}
// SpentNotIn applies the NotIn predicate on the "spent" field.
func SpentNotIn(vs ...uint) predicate.RoundStats {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.RoundStats(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.NotIn(s.C(FieldSpent), v...))
})
}
// SpentGT applies the GT predicate on the "spent" field.
func SpentGT(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldSpent), v))
})
}
// SpentGTE applies the GTE predicate on the "spent" field.
func SpentGTE(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldSpent), v))
})
}
// SpentLT applies the LT predicate on the "spent" field.
func SpentLT(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldSpent), v))
})
}
// SpentLTE applies the LTE predicate on the "spent" field.
func SpentLTE(v uint) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldSpent), v))
})
}
// HasStat applies the HasEdge predicate on the "stat" edge.
func HasStat() predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(StatTable, FieldID),
sqlgraph.Edge(sqlgraph.M2O, true, StatTable, StatColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasStatWith applies the HasEdge predicate on the "stat" edge with a given conditions (other predicates).
func HasStatWith(preds ...predicate.Stats) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(StatInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.M2O, true, StatTable, StatColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// And groups predicates with the AND operator between them.
func And(predicates ...predicate.RoundStats) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s1 := s.Clone().SetP(nil)
for _, p := range predicates {
p(s1)
}
s.Where(s1.P())
})
}
// Or groups predicates with the OR operator between them.
func Or(predicates ...predicate.RoundStats) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
s1 := s.Clone().SetP(nil)
for i, p := range predicates {
if i > 0 {
s1.Or()
}
p(s1)
}
s.Where(s1.P())
})
}
// Not applies the not operator on the given predicate.
func Not(p predicate.RoundStats) predicate.RoundStats {
return predicate.RoundStats(func(s *sql.Selector) {
p(s.Not())
})
}