// Code generated by ent, DO NOT EDIT. package roundstats import ( "entgo.io/ent/dialect/sql" "entgo.io/ent/dialect/sql/sqlgraph" "git.harting.dev/csgowtf/csgowtfd/ent/predicate" ) // ID filters vertices based on their ID field. func ID(id int) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldID), id)) }) } // IDEQ applies the EQ predicate on the ID field. func IDEQ(id int) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldID), id)) }) } // IDNEQ applies the NEQ predicate on the ID field. func IDNEQ(id int) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldID), id)) }) } // IDIn applies the In predicate on the ID field. func IDIn(ids ...int) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { v := make([]interface{}, len(ids)) for i := range v { v[i] = ids[i] } s.Where(sql.In(s.C(FieldID), v...)) }) } // IDNotIn applies the NotIn predicate on the ID field. func IDNotIn(ids ...int) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { v := make([]interface{}, len(ids)) for i := range v { v[i] = ids[i] } s.Where(sql.NotIn(s.C(FieldID), v...)) }) } // IDGT applies the GT predicate on the ID field. func IDGT(id int) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldID), id)) }) } // IDGTE applies the GTE predicate on the ID field. func IDGTE(id int) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldID), id)) }) } // IDLT applies the LT predicate on the ID field. func IDLT(id int) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldID), id)) }) } // IDLTE applies the LTE predicate on the ID field. func IDLTE(id int) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldID), id)) }) } // Round applies equality check predicate on the "round" field. It's identical to RoundEQ. func Round(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldRound), v)) }) } // Bank applies equality check predicate on the "bank" field. It's identical to BankEQ. func Bank(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldBank), v)) }) } // Equipment applies equality check predicate on the "equipment" field. It's identical to EquipmentEQ. func Equipment(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldEquipment), v)) }) } // Spent applies equality check predicate on the "spent" field. It's identical to SpentEQ. func Spent(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldSpent), v)) }) } // RoundEQ applies the EQ predicate on the "round" field. func RoundEQ(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldRound), v)) }) } // RoundNEQ applies the NEQ predicate on the "round" field. func RoundNEQ(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldRound), v)) }) } // RoundIn applies the In predicate on the "round" field. func RoundIn(vs ...uint) predicate.RoundStats { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.In(s.C(FieldRound), v...)) }) } // RoundNotIn applies the NotIn predicate on the "round" field. func RoundNotIn(vs ...uint) predicate.RoundStats { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.NotIn(s.C(FieldRound), v...)) }) } // RoundGT applies the GT predicate on the "round" field. func RoundGT(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldRound), v)) }) } // RoundGTE applies the GTE predicate on the "round" field. func RoundGTE(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldRound), v)) }) } // RoundLT applies the LT predicate on the "round" field. func RoundLT(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldRound), v)) }) } // RoundLTE applies the LTE predicate on the "round" field. func RoundLTE(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldRound), v)) }) } // BankEQ applies the EQ predicate on the "bank" field. func BankEQ(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldBank), v)) }) } // BankNEQ applies the NEQ predicate on the "bank" field. func BankNEQ(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldBank), v)) }) } // BankIn applies the In predicate on the "bank" field. func BankIn(vs ...uint) predicate.RoundStats { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.In(s.C(FieldBank), v...)) }) } // BankNotIn applies the NotIn predicate on the "bank" field. func BankNotIn(vs ...uint) predicate.RoundStats { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.NotIn(s.C(FieldBank), v...)) }) } // BankGT applies the GT predicate on the "bank" field. func BankGT(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldBank), v)) }) } // BankGTE applies the GTE predicate on the "bank" field. func BankGTE(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldBank), v)) }) } // BankLT applies the LT predicate on the "bank" field. func BankLT(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldBank), v)) }) } // BankLTE applies the LTE predicate on the "bank" field. func BankLTE(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldBank), v)) }) } // EquipmentEQ applies the EQ predicate on the "equipment" field. func EquipmentEQ(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldEquipment), v)) }) } // EquipmentNEQ applies the NEQ predicate on the "equipment" field. func EquipmentNEQ(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldEquipment), v)) }) } // EquipmentIn applies the In predicate on the "equipment" field. func EquipmentIn(vs ...uint) predicate.RoundStats { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.In(s.C(FieldEquipment), v...)) }) } // EquipmentNotIn applies the NotIn predicate on the "equipment" field. func EquipmentNotIn(vs ...uint) predicate.RoundStats { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.NotIn(s.C(FieldEquipment), v...)) }) } // EquipmentGT applies the GT predicate on the "equipment" field. func EquipmentGT(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldEquipment), v)) }) } // EquipmentGTE applies the GTE predicate on the "equipment" field. func EquipmentGTE(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldEquipment), v)) }) } // EquipmentLT applies the LT predicate on the "equipment" field. func EquipmentLT(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldEquipment), v)) }) } // EquipmentLTE applies the LTE predicate on the "equipment" field. func EquipmentLTE(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldEquipment), v)) }) } // SpentEQ applies the EQ predicate on the "spent" field. func SpentEQ(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldSpent), v)) }) } // SpentNEQ applies the NEQ predicate on the "spent" field. func SpentNEQ(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldSpent), v)) }) } // SpentIn applies the In predicate on the "spent" field. func SpentIn(vs ...uint) predicate.RoundStats { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.In(s.C(FieldSpent), v...)) }) } // SpentNotIn applies the NotIn predicate on the "spent" field. func SpentNotIn(vs ...uint) predicate.RoundStats { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.NotIn(s.C(FieldSpent), v...)) }) } // SpentGT applies the GT predicate on the "spent" field. func SpentGT(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldSpent), v)) }) } // SpentGTE applies the GTE predicate on the "spent" field. func SpentGTE(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldSpent), v)) }) } // SpentLT applies the LT predicate on the "spent" field. func SpentLT(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldSpent), v)) }) } // SpentLTE applies the LTE predicate on the "spent" field. func SpentLTE(v uint) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldSpent), v)) }) } // HasMatchPlayer applies the HasEdge predicate on the "match_player" edge. func HasMatchPlayer() predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(MatchPlayerTable, FieldID), sqlgraph.Edge(sqlgraph.M2O, true, MatchPlayerTable, MatchPlayerColumn), ) sqlgraph.HasNeighbors(s, step) }) } // HasMatchPlayerWith applies the HasEdge predicate on the "match_player" edge with a given conditions (other predicates). func HasMatchPlayerWith(preds ...predicate.MatchPlayer) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(MatchPlayerInverseTable, FieldID), sqlgraph.Edge(sqlgraph.M2O, true, MatchPlayerTable, MatchPlayerColumn), ) sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) { for _, p := range preds { p(s) } }) }) } // And groups predicates with the AND operator between them. func And(predicates ...predicate.RoundStats) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s1 := s.Clone().SetP(nil) for _, p := range predicates { p(s1) } s.Where(s1.P()) }) } // Or groups predicates with the OR operator between them. func Or(predicates ...predicate.RoundStats) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { s1 := s.Clone().SetP(nil) for i, p := range predicates { if i > 0 { s1.Or() } p(s1) } s.Where(s1.P()) }) } // Not applies the not operator on the given predicate. func Not(p predicate.RoundStats) predicate.RoundStats { return predicate.RoundStats(func(s *sql.Selector) { p(s.Not()) }) }