Files
vessel/frontend/src/lib/components/chat/ChatWindow.svelte
vikingowl 26b4f342fc feat: add web search and location tools
- Add web_search built-in tool that searches via DuckDuckGo
- Add get_location tool to get user's geographic location
- Create backend search proxy endpoint (/api/v1/proxy/search)
- DuckDuckGo HTML scraping with title, URL, and snippet extraction
- Geolocation with OpenStreetMap reverse geocoding for city/country
- Fix StreamingIndicator visibility in dark mode
- Improve tool descriptions to encourage proper tool usage
- Better error messages with suggestions when location fails

🤖 Generated with [Claude Code](https://claude.ai/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-31 20:04:09 +01:00

653 lines
20 KiB
Svelte

<script lang="ts">
/**
* ChatWindow - Main container for the chat interface
* Handles sending messages, streaming responses, and tool execution
*/
import { chatState, modelsState, conversationsState, toolsState, promptsState } from '$lib/stores';
import { ollamaClient } from '$lib/ollama';
import { addMessage as addStoredMessage, updateConversation, createConversation as createStoredConversation } from '$lib/storage';
import {
contextManager,
generateSummary,
selectMessagesForSummarization,
calculateTokenSavings,
formatSummaryAsContext,
searchSimilar,
formatResultsAsContext,
getKnowledgeBaseStats
} from '$lib/memory';
import { runToolCalls, formatToolResultsForChat, getFunctionModel, USE_FUNCTION_MODEL } from '$lib/tools';
import type { OllamaMessage, OllamaToolCall, OllamaToolDefinition } from '$lib/ollama';
import type { Conversation } from '$lib/types/conversation';
import MessageList from './MessageList.svelte';
import ChatInput from './ChatInput.svelte';
import EmptyState from './EmptyState.svelte';
import ContextUsageBar from './ContextUsageBar.svelte';
import SummaryBanner from './SummaryBanner.svelte';
/**
* Props interface for ChatWindow
* - mode: 'new' for new chat page, 'conversation' for existing conversations
* - onFirstMessage: callback for when first message is sent in 'new' mode
* - conversation: conversation metadata when in 'conversation' mode
*/
interface Props {
mode?: 'new' | 'conversation';
onFirstMessage?: (content: string, images?: string[]) => Promise<void>;
conversation?: Conversation | null;
}
let { mode = 'new', onFirstMessage, conversation }: Props = $props();
// Local state for abort controller
let abortController: AbortController | null = $state(null);
// Summarization state
let isSummarizing = $state(false);
// Tool execution state
let isExecutingTools = $state(false);
// RAG (Retrieval-Augmented Generation) state
let ragEnabled = $state(true);
let hasKnowledgeBase = $state(false);
let lastRagContext = $state<string | null>(null);
// Check for knowledge base on mount
$effect(() => {
checkKnowledgeBase();
});
/**
* Check if knowledge base has any documents
*/
async function checkKnowledgeBase(): Promise<void> {
try {
const stats = await getKnowledgeBaseStats();
hasKnowledgeBase = stats.documentCount > 0;
} catch {
hasKnowledgeBase = false;
}
}
/**
* Retrieve relevant context from knowledge base for the query
*/
async function retrieveRagContext(query: string): Promise<string | null> {
if (!ragEnabled || !hasKnowledgeBase) return null;
try {
const results = await searchSimilar(query, 3, 0.5);
if (results.length === 0) return null;
const context = formatResultsAsContext(results);
console.log('[RAG] Retrieved', results.length, 'chunks for context');
return context;
} catch (error) {
console.error('[RAG] Failed to retrieve context:', error);
return null;
}
}
/**
* Convert OllamaToolCall to the format expected by tool executor
* Ollama doesn't provide IDs, so we generate them
*/
function convertToolCalls(ollamaCalls: OllamaToolCall[]): Array<{ id: string; function: { name: string; arguments: string } }> {
return ollamaCalls.map((call, index) => ({
id: `tool-${Date.now()}-${index}`,
function: {
name: call.function.name,
arguments: JSON.stringify(call.function.arguments)
}
}));
}
/**
* Get tool definitions for the API call
*/
function getToolsForApi(): OllamaToolDefinition[] | undefined {
if (!toolsState.toolsEnabled) return undefined;
const tools = toolsState.getEnabledToolDefinitions();
return tools.length > 0 ? tools as OllamaToolDefinition[] : undefined;
}
// Derived: Check if there are any messages
const hasMessages = $derived(chatState.visibleMessages.length > 0);
// Update context manager when model changes
$effect(() => {
const model = modelsState.selectedId;
if (model) {
contextManager.setModel(model);
}
});
// Update context manager when messages change
$effect(() => {
contextManager.updateMessages(chatState.visibleMessages);
});
// Invalidate streaming message token cache on content update
// Only do this occasionally (the throttling in contextManager handles the rest)
$effect(() => {
if (chatState.streamingMessageId && chatState.streamBuffer) {
contextManager.invalidateMessage(chatState.streamingMessageId);
}
});
// Flush pending context updates when streaming finishes
$effect(() => {
if (!chatState.isStreaming) {
// Force a full context update when streaming ends
contextManager.flushPendingUpdate();
contextManager.updateMessages(chatState.visibleMessages, true);
}
});
/**
* Convert chat state messages to Ollama API format
*/
function getMessagesForApi(): OllamaMessage[] {
return chatState.visibleMessages.map((node) => ({
role: node.message.role as OllamaMessage['role'],
content: node.message.content,
images: node.message.images
}));
}
/**
* Handle summarization of older messages
*/
async function handleSummarize(): Promise<void> {
const selectedModel = modelsState.selectedId;
if (!selectedModel || isSummarizing) return;
const messages = chatState.visibleMessages;
const { toSummarize, toKeep } = selectMessagesForSummarization(messages, 0);
if (toSummarize.length === 0) {
console.log('No messages to summarize');
return;
}
isSummarizing = true;
try {
// Generate summary using the LLM
const summary = await generateSummary(toSummarize, selectedModel);
const formattedSummary = formatSummaryAsContext(summary);
// Calculate savings for logging
const savedTokens = calculateTokenSavings(toSummarize, formattedSummary);
console.log(`Summarization saved ~${savedTokens} tokens`);
// For now, we'll log the summary - full implementation would
// replace the old messages with the summary in the chat state
console.log('Summary generated:', summary);
// TODO: Implement message replacement in chat state
// This requires adding a method to ChatState to replace messages
// with a summary node
} catch (error) {
console.error('Summarization failed:', error);
} finally {
isSummarizing = false;
}
}
/**
* Send a message and stream the response (with tool support)
*/
async function handleSendMessage(content: string, images?: string[]): Promise<void> {
console.log('[Chat] handleSendMessage called:', content.substring(0, 50));
const selectedModel = modelsState.selectedId;
if (!selectedModel) {
console.error('No model selected');
return;
}
// In 'new' mode with no messages yet, create conversation first
if (mode === 'new' && !hasMessages && onFirstMessage) {
await onFirstMessage(content, images);
return;
}
let conversationId = chatState.conversationId;
// Auto-create conversation if none exists (fallback for edge cases)
if (!conversationId) {
const title = content.length > 50 ? content.substring(0, 47) + '...' : content;
const result = await createStoredConversation({
title,
model: selectedModel,
isPinned: false,
isArchived: false
});
if (result.success) {
conversationId = result.data.id;
chatState.conversationId = conversationId;
conversationsState.add(result.data);
}
}
// Add user message to tree
const userMessageId = chatState.addMessage({
role: 'user',
content,
images
});
// Persist user message to IndexedDB with the SAME ID as chatState
if (conversationId) {
const parentId = chatState.activePath.length >= 2
? chatState.activePath[chatState.activePath.length - 2]
: null;
await addStoredMessage(conversationId, { role: 'user', content, images }, parentId, userMessageId);
}
// Stream assistant message with optional tool support
await streamAssistantResponse(selectedModel, userMessageId, conversationId);
}
/**
* Stream assistant response with tool call handling and RAG context
*/
async function streamAssistantResponse(
model: string,
parentMessageId: string,
conversationId: string | null
): Promise<void> {
console.log('[Chat] streamAssistantResponse called with model:', model);
const assistantMessageId = chatState.startStreaming();
abortController = new AbortController();
// Track tool calls received during streaming
let pendingToolCalls: OllamaToolCall[] | null = null;
try {
let messages = getMessagesForApi();
const tools = getToolsForApi();
// Build system prompt from active prompt + RAG context
const systemParts: string[] = [];
// Wait for prompts to be loaded, then add system prompt if active
await promptsState.ready();
const activePrompt = promptsState.activePrompt;
if (activePrompt) {
systemParts.push(activePrompt.content);
console.log('[Chat] Using system prompt:', activePrompt.name);
}
// RAG: Retrieve relevant context for the last user message
const lastUserMessage = messages.filter(m => m.role === 'user').pop();
if (lastUserMessage && ragEnabled && hasKnowledgeBase) {
const ragContext = await retrieveRagContext(lastUserMessage.content);
if (ragContext) {
lastRagContext = ragContext;
systemParts.push(`You have access to a knowledge base. Use the following relevant context to help answer the user's question. If the context isn't relevant, you can ignore it.\n\n${ragContext}`);
console.log('[RAG] Injected context into conversation');
}
}
// Inject combined system message
if (systemParts.length > 0) {
const systemMessage: OllamaMessage = {
role: 'system',
content: systemParts.join('\n\n---\n\n')
};
messages = [systemMessage, ...messages];
}
// Use function model for tool routing if enabled and tools are present
const chatModel = (tools && tools.length > 0 && USE_FUNCTION_MODEL)
? getFunctionModel(model)
: model;
// Debug logging
console.log('[Chat] Tools enabled:', toolsState.toolsEnabled);
console.log('[Chat] Tools count:', tools?.length ?? 0);
console.log('[Chat] Tool names:', tools?.map(t => t.function.name) ?? []);
console.log('[Chat] USE_FUNCTION_MODEL:', USE_FUNCTION_MODEL);
console.log('[Chat] Using model:', chatModel, '(original:', model, ')');
await ollamaClient.streamChatWithCallbacks(
{
model: chatModel,
messages,
tools
},
{
onToken: (token) => {
chatState.appendToStreaming(token);
},
onToolCall: (toolCalls) => {
// Store tool calls to process after streaming completes
pendingToolCalls = toolCalls;
console.log('Tool calls received:', toolCalls);
},
onComplete: async () => {
chatState.finishStreaming();
abortController = null;
// Handle tool calls if received
if (pendingToolCalls && pendingToolCalls.length > 0) {
await executeToolsAndContinue(
model,
assistantMessageId,
pendingToolCalls,
conversationId
);
return; // Tool continuation handles persistence
}
// Persist assistant message to IndexedDB with the SAME ID as chatState
if (conversationId) {
const node = chatState.messageTree.get(assistantMessageId);
if (node) {
await addStoredMessage(
conversationId,
{ role: 'assistant', content: node.message.content },
parentMessageId,
assistantMessageId
);
await updateConversation(conversationId, {});
conversationsState.update(conversationId, {});
}
}
},
onError: (error) => {
console.error('Streaming error:', error);
chatState.finishStreaming();
abortController = null;
}
},
abortController.signal
);
} catch (error) {
console.error('Failed to send message:', error);
chatState.finishStreaming();
abortController = null;
}
}
/**
* Execute tool calls and continue the conversation with results
*/
async function executeToolsAndContinue(
model: string,
assistantMessageId: string,
toolCalls: OllamaToolCall[],
conversationId: string | null
): Promise<void> {
isExecutingTools = true;
try {
// Convert tool calls to executor format
const convertedCalls = convertToolCalls(toolCalls);
// Execute all tools (including custom tools)
const results = await runToolCalls(convertedCalls, undefined, toolsState.customTools);
// Format results for chat
const toolResultContent = formatToolResultsForChat(results);
// Add the assistant's tool call response to chat (with info about what was called)
const toolCallInfo = toolCalls
.map(tc => `Called tool: ${tc.function.name}(${JSON.stringify(tc.function.arguments)})`)
.join('\n');
// Update the assistant message with tool call info and structured data
const assistantNode = chatState.messageTree.get(assistantMessageId);
if (assistantNode) {
assistantNode.message.content = toolCallInfo + '\n\n' + toolResultContent;
// Store structured tool call data for display
assistantNode.message.toolCalls = toolCalls.map(tc => ({
id: crypto.randomUUID(),
name: tc.function.name,
arguments: JSON.stringify(tc.function.arguments)
}));
}
// Persist the assistant message with tool info
if (conversationId) {
const parentNode = chatState.messageTree.get(assistantMessageId);
if (parentNode) {
const parentOfAssistant = parentNode.parentId;
await addStoredMessage(
conversationId,
{ role: 'assistant', content: toolCallInfo + '\n\n' + toolResultContent },
parentOfAssistant,
assistantMessageId
);
}
}
// Now stream a follow-up response that uses the tool results
// Add tool results as a system/tool message to context
const toolMessageId = chatState.addMessage({
role: 'user', // Ollama expects tool results in a user-like message
content: `Tool execution results:\n${toolResultContent}\n\nPlease provide a response based on these results.`
});
if (conversationId) {
await addStoredMessage(
conversationId,
{ role: 'user', content: `Tool execution results:\n${toolResultContent}` },
assistantMessageId,
toolMessageId
);
}
// Stream the final response
await streamAssistantResponse(model, toolMessageId, conversationId);
} catch (error) {
console.error('Tool execution failed:', error);
// Update assistant message with error
const node = chatState.messageTree.get(assistantMessageId);
if (node) {
node.message.content = `Tool execution failed: ${error instanceof Error ? error.message : 'Unknown error'}`;
}
} finally {
isExecutingTools = false;
}
}
/**
* Stop the current streaming response
*/
function handleStopStreaming(): void {
if (abortController) {
abortController.abort();
abortController = null;
}
chatState.finishStreaming();
}
/**
* Regenerate the last assistant response
* Creates a new sibling message for the assistant response and streams a new answer
*/
async function handleRegenerate(): Promise<void> {
if (!chatState.canRegenerate) return;
const selectedModel = modelsState.selectedId;
if (!selectedModel) return;
// Get the last message (should be an assistant message)
const lastMessageId = chatState.activePath[chatState.activePath.length - 1];
const lastNode = chatState.messageTree.get(lastMessageId);
if (!lastNode || lastNode.message.role !== 'assistant') return;
const conversationId = chatState.conversationId;
// Use the new startRegeneration method which creates a sibling and sets up streaming
const newMessageId = chatState.startRegeneration(lastMessageId);
if (!newMessageId) {
console.error('Failed to start regeneration');
return;
}
// Get the parent user message for context
const parentUserMessage = chatState.getParentUserMessage(newMessageId);
const parentUserMessageId = parentUserMessage?.id;
abortController = new AbortController();
// Track tool calls received during streaming
let pendingToolCalls: OllamaToolCall[] | null = null;
try {
// Get messages for API - excludes the current empty assistant message being streamed
const messages = getMessagesForApi().filter(m => m.content !== '');
const tools = getToolsForApi();
// Use function model for tool routing if enabled and tools are present
const chatModel = (tools && tools.length > 0 && USE_FUNCTION_MODEL)
? getFunctionModel(selectedModel)
: selectedModel;
await ollamaClient.streamChatWithCallbacks(
{
model: chatModel,
messages,
tools
},
{
onToken: (token) => {
chatState.appendToStreaming(token);
},
onToolCall: (toolCalls) => {
pendingToolCalls = toolCalls;
},
onComplete: async () => {
chatState.finishStreaming();
abortController = null;
// Handle tool calls if received
if (pendingToolCalls && pendingToolCalls.length > 0) {
await executeToolsAndContinue(
selectedModel,
newMessageId,
pendingToolCalls,
conversationId
);
return;
}
// Persist regenerated assistant message to IndexedDB with the SAME ID
if (conversationId && parentUserMessageId) {
const node = chatState.messageTree.get(newMessageId);
if (node) {
await addStoredMessage(
conversationId,
{ role: 'assistant', content: node.message.content },
parentUserMessageId,
newMessageId
);
// Update conversation timestamp
await updateConversation(conversationId, {});
conversationsState.update(conversationId, {});
}
}
},
onError: (error) => {
console.error('Regenerate error:', error);
chatState.finishStreaming();
abortController = null;
}
},
abortController.signal
);
} catch (error) {
console.error('Failed to regenerate:', error);
chatState.finishStreaming();
abortController = null;
}
}
/**
* Edit a user message and regenerate
* Creates a new sibling user message and triggers a new assistant response
*/
async function handleEditMessage(messageId: string, newContent: string): Promise<void> {
const selectedModel = modelsState.selectedId;
if (!selectedModel) return;
// Find the message
const node = chatState.messageTree.get(messageId);
if (!node || node.message.role !== 'user') return;
const conversationId = chatState.conversationId;
// Use the new startEditWithNewBranch method which creates a sibling user message
const newUserMessageId = chatState.startEditWithNewBranch(
messageId,
newContent,
node.message.images
);
if (!newUserMessageId) {
console.error('Failed to create edited message branch');
return;
}
// Persist the new user message to IndexedDB with the SAME ID
if (conversationId) {
// Get the parent of the original message (which is also the parent of our new message)
const parentId = node.parentId;
await addStoredMessage(
conversationId,
{ role: 'user', content: newContent, images: node.message.images },
parentId,
newUserMessageId
);
}
// Stream the response using the shared function (with tool support)
await streamAssistantResponse(selectedModel, newUserMessageId, conversationId);
}
</script>
<div class="flex h-full flex-col">
{#if hasMessages}
<div class="flex-1 overflow-hidden">
<MessageList
onRegenerate={handleRegenerate}
onEditMessage={handleEditMessage}
/>
</div>
{:else}
<div class="flex flex-1 items-center justify-center">
<EmptyState />
</div>
{/if}
<div class="border-t border-gray-200 dark:border-gray-700">
<!-- Summary recommendation banner -->
<SummaryBanner onSummarize={handleSummarize} isLoading={isSummarizing} />
<!-- Context usage indicator -->
{#if hasMessages}
<div class="px-4 pt-3">
<ContextUsageBar />
</div>
{/if}
<div class="p-4 pt-2">
<ChatInput
onSend={handleSendMessage}
onStop={handleStopStreaming}
isStreaming={chatState.isStreaming}
disabled={!modelsState.selectedId}
/>
</div>
</div>
</div>