enhance: add article content extraction and integrate with summarization process

This commit is contained in:
2025-08-01 18:55:55 +02:00
parent 003b8da4b2
commit 3a1c817381
3 changed files with 131 additions and 22 deletions

2
backend/.gitignore vendored
View File

@@ -54,3 +54,5 @@ logs/
.vscode/
*.swp
*.swo
/owlynews.sqlite-shm
/owlynews.sqlite-wal

View File

@@ -1,3 +1,4 @@
"""
Owly News Summariser Backend
@@ -12,6 +13,7 @@ import asyncio
import json
import os
import sqlite3
import re
from contextlib import contextmanager
from datetime import datetime, timezone, timedelta
from http.client import HTTPException
@@ -25,6 +27,7 @@ from apscheduler.schedulers.asyncio import AsyncIOScheduler
from fastapi import FastAPI, Response, status, Depends
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from bs4 import BeautifulSoup
# Constants
DB_PATH = Path("owlynews.sqlite")
@@ -36,6 +39,8 @@ SYNC_COOLDOWN_MINUTES = 30
LLM_MODEL = "qwen2:7b-instruct-q4_K_M"
LLM_TIMEOUT_SECONDS = 180
OLLAMA_API_TIMEOUT_SECONDS = 10
ARTICLE_FETCH_TIMEOUT = 30
MAX_ARTICLE_LENGTH = 5000 # Max characters from article content
# Add logging configuration at the top of your file
logging.basicConfig(
@@ -279,7 +284,97 @@ class NewsFetcher:
"""
@staticmethod
def build_prompt(url: str, title: str = "", description: str = "") -> str:
async def fetch_article_content(client: httpx.AsyncClient, url: str) -> str:
"""
Fetch and extract the main content from an article URL.
Args:
client: An active httpx AsyncClient for making requests
url: URL of the article to fetch
Returns:
Extracted text content from the article, or empty string if failed
"""
try:
logger.debug(f"🌐 Fetching article content from: {url}")
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = await client.get(
url,
headers=headers,
timeout=ARTICLE_FETCH_TIMEOUT,
follow_redirects=True
)
response.raise_for_status()
# Parse HTML content
soup = BeautifulSoup(response.text, 'html.parser')
# Remove unwanted elements
for element in soup(['script', 'style', 'nav', 'header', 'footer', 'aside', 'form', 'button']):
element.decompose()
# Try to find main content areas
content_selectors = [
'article',
'[role="main"]',
'.content',
'.article-content',
'.post-content',
'.entry-content',
'.main-content',
'main',
'.story-body',
'.article-body'
]
article_text = ""
# Try each selector until we find content
for selector in content_selectors:
elements = soup.select(selector)
if elements:
# Get text from all matching elements
for element in elements:
text = element.get_text(separator=' ', strip=True)
if len(text) > len(article_text):
article_text = text
break
# Fallback: get text from body if no specific content area found
if not article_text:
body = soup.find('body')
if body:
article_text = body.get_text(separator=' ', strip=True)
# Clean up the text
article_text = re.sub(r'\s+', ' ', article_text) # Normalize whitespace
article_text = article_text.strip()
# Limit length to avoid overwhelming the LLM
if len(article_text) > MAX_ARTICLE_LENGTH:
article_text = article_text[:MAX_ARTICLE_LENGTH] + "..."
logger.debug(f"✂️ Truncated article content to {MAX_ARTICLE_LENGTH} characters")
logger.debug(f"📄 Extracted {len(article_text)} characters from article")
return article_text
except httpx.TimeoutException:
logger.warning(f"⏰ Timeout fetching article content from: {url}")
return ""
except httpx.HTTPError as e:
logger.warning(f"🌐 HTTP error fetching article content from {url}: {e}")
return ""
except Exception as e:
logger.warning(f"❌ Error fetching article content from {url}: {type(e).__name__}: {e}")
return ""
@staticmethod
def build_prompt(url: str, title: str = "", description: str = "", content: str = "") -> str:
"""
Generate a prompt for the LLM to summarize an article.
@@ -287,6 +382,7 @@ class NewsFetcher:
url: Public URL of the article to summarize
title: Article title from RSS feed (optional)
description: Article description from RSS feed (optional)
content: Extracted article content (optional)
Returns:
A formatted prompt string that instructs the LLM to generate
@@ -294,9 +390,13 @@ class NewsFetcher:
"""
context_info = []
if title:
context_info.append(f"Titel: {title}")
context_info.append(f"RSS-Titel: {title}")
if description:
context_info.append(f"Beschreibung: {description}")
context_info.append(f"RSS-Beschreibung: {description}")
if content:
# Show first part of content for context
content_preview = content[:500] + "..." if len(content) > 500 else content
context_info.append(f"Artikel-Inhalt: {content_preview}")
context = "\n".join(context_info) if context_info else "Keine zusätzlichen Informationen verfügbar."
@@ -306,14 +406,15 @@ class NewsFetcher:
f"URL: {url}\n"
f"Verfügbare Informationen:\n{context}\n\n"
"### Regeln\n"
"1. Nutze die verfügbaren Informationen (Titel, Beschreibung) und dein Wissen über die URL-Domain\n"
"2. Falls keine ausreichenden Informationen vorliegen, erstelle eine plausible Zusammenfassung basierend auf der URL\n"
"3. Gib ausschließlich **gültiges minifiziertes JSON** zurück kein Markdown, keine Kommentare\n"
"4. Struktur: {\"title\":\"\",\"summary_de\":\"\",\"summary_en\":\"\"}\n"
"5. title: Aussagekräftiger deutscher Titel (max 100 Zeichen)\n"
"6. summary_de: Deutsche Zusammenfassung (max 160 Wörter)\n"
"7. summary_en: Englische Zusammenfassung (max 160 Wörter)\n"
"8. Kein Text vor oder nach dem JSON\n\n"
"1. Nutze VORRANGIG den Artikel-Inhalt falls verfügbar, ergänze mit RSS-Informationen\n"
"2. Falls kein Artikel-Inhalt verfügbar ist, nutze RSS-Titel und -Beschreibung\n"
"3. Falls keine ausreichenden Informationen vorliegen, erstelle eine plausible Zusammenfassung basierend auf der URL\n"
"4. Gib ausschließlich **gültiges minifiziertes JSON** zurück kein Markdown, keine Kommentare\n"
"5. Struktur: {\"title\":\"\",\"summary_de\":\"\",\"summary_en\":\"\"}\n"
"6. title: Aussagekräftiger deutscher Titel (max 100 Zeichen)\n"
"7. summary_de: Deutsche Zusammenfassung (max 160 Wörter)\n"
"8. summary_en: Englische Zusammenfassung (max 160 Wörter)\n"
"9. Kein Text vor oder nach dem JSON\n\n"
"### Ausgabe\n"
"Jetzt antworte mit dem JSON:"
)
@@ -327,6 +428,7 @@ class NewsFetcher:
) -> Optional[ArticleSummary]:
"""
Generate a summary of an article using the LLM.
Now fetches the actual article content for more accurate summaries.
Args:
client: An active httpx AsyncClient for making requests
@@ -342,7 +444,16 @@ class NewsFetcher:
logger.debug(f"📝 RSS Title: {title[:50]}..." if title else "📝 No RSS title")
logger.debug(f"📄 RSS Description: {description[:100]}..." if description else "📄 No RSS description")
prompt = NewsFetcher.build_prompt(url, title, description)
# Fetch article content
logger.debug(f"🌐 Fetching article content...")
article_content = await NewsFetcher.fetch_article_content(client, url)
if article_content:
logger.info(f"✅ Successfully fetched article content ({len(article_content)} chars)")
else:
logger.warning(f"⚠️ Could not fetch article content, using RSS data only")
prompt = NewsFetcher.build_prompt(url, title, description, article_content)
payload = {
"model": LLM_MODEL,
"prompt": prompt,
@@ -472,6 +583,7 @@ class NewsFetcher:
) -> Dict[str, int]:
"""
Process a single feed, fetching and summarizing all articles.
Now saves summaries immediately to the database.
Args:
client: An active httpx AsyncClient for making requests
@@ -509,7 +621,7 @@ class NewsFetcher:
continue
if not hasattr(entry, "published_parsed"):
logger.debug(f"⏩ Skipping entry {i}: no published date") # TODO: change back to 0.5
logger.debug(f"⏩ Skipping entry {i}: no published date")
stats['skipped'] += 1
continue
@@ -557,15 +669,9 @@ class NewsFetcher:
published_timestamp = int(published.timestamp())
# Handle source field - it can be a string or dict
source_value = entry.get("source", feed_row["url"])
if isinstance(source_value, dict):
source_title = source_value.get("title", feed_row["url"])
else:
source_title = source_value if source_value else feed_row["url"]
logger.debug(f"💾 Storing article in database")
logger.debug(f"💾 Storing article in database immediately after summarization")
# Store in database immediately after successful summarization
# Store in database
try:
with db_manager.get_cursor() as cursor:
@@ -583,7 +689,7 @@ class NewsFetcher:
)
)
logger.info(f"✅ Successfully processed article {i}: {summary['title'][:50]}...")
logger.info(f"✅ Successfully processed and stored article {i}: {summary['title'][:50]}...")
stats['successful'] += 1
except Exception as db_error:

View File

@@ -8,3 +8,4 @@ uvicorn[standard]
python-multipart
psycopg2-binary
sqlalchemy
beautifulsoup4